

Al Empowerment:

Infrastructure Canada's Ethical and Responsible Roadmap

Kate Burnett-Isaacs, Infrastructure Canada

CDAO

June 18, 2024

Purpose

To answer.....

...."How Infrastructure Canada uses Artificial Intelligence ethically and responsibly to improve the lives of Canadians by enabling investment in housing, infrastructure and communities"

Al Opportunities in Investment in Housing, Infrastructure and Communities

Enhance public decisions

Improve efficiency in service and operations

Promote open policy development

Enhance risk based regulations and compliance

Move forward ethically and with confidence

With new opportunities come new risks:

- Unethical use of data
- False answers or fake content
- Fraud and abuse
- Exposure of information (incl breaches)
- Securing public trust
- Poor training data
- *IP and copyright infringements*
- Lack of transparency and explainability

Risk Mitigation

Government of Canada principles and directives for responsible use of artificial intelligence and Generative Artificial Intelligence

+

INFC's AI Framework to operationalize TBS policies

Why did we develop our own framework?

We are proposing a framework to put into place processes, procedures and safeguards now, to allow AI to grow:

Securely

Strategically

Responsibly

Flexibility to adapt to changes in the GoC landscape

\$2.4 billion in government funding to build AI capabilities and tech infrastructure

ISED Pan-Canadian AI strategy for R&D

TBS's directive on automated decision making

TBS's guidelines on generative Al

TBS's ongoing work to create an AI strategy

Al projects are designed and implemented to be used in operations

Business challenges first

Business collaborators

INFC AI Framework Scope and Principles

The Framework applies to models and systems that develop learning capabilities

The framework outlines the following principles:

- ✓ Privacy
- ✓ Security
- ✓ Quality
- √ Robustness
- ✓ Oversight
- ✓ Fairness
- √ inclusiveness

- ✓ Accountability
- ✓ Transparency
- ✓ Non-maleficence,
- ✓ Public value,
- ✓ Autonomy,
- ✓ Risk minimization, and
- ✓ Accessibility.

These principles are designed to ensure responsible and ethical use of Al.

INFC AI Framework Requirements

Example Requirements	When to be implemented
☐ Algorithmic Impact Assessments (AIAs)	✓ When AI projects fall under the Treasury Board Secretariat's <u>Directive on Automated decision-Making</u>
□ Notices and explanations	✓ When AI systems can affect individuals, organizations or other INFC teams' work (determined through completing AI playbook)
□ Release of source code and licensing	✓ When AI projects are deployed in production
Documentation, testing and monitoring	✓ When AI projects are being developed, tested and deployed
Al systems inventory and Al systems risk registry	✓ Whenever AI projects are being tested, developed and when they are implemented
Establishing a panel of experts for advisory	✓ When HIAIS* are to be tested, developed and deployed

*HIAIS: High-Impact AI Systems

Our ethical and responsible Al roadmap

Our experience so far

- INFC has four AI projects at different stages of development.
- Each project has taught us lessons to guide future implementation and measures of success

PoC: Results Stories Large Language Model for data extraction

Business Challenge

Extract data from 25,000 project titles and descriptions to inform INFC's result stories

Current process is inefficient, time consuming and has risk of human error

Data

The Housing and Infrastructure Project Map dataset available on INFC's website

Project numbers and project descriptions for all approved and announced projects since 2016.

Al method

Large Language Model (LLM) Agents and Retrieval Augmented Generation (RAG) techniques

Fine-tuning a Large Language Model using OpenAI's API services for developers

Final product

A dataset with project outcomes and results available for Result Stories and the whole department

Framework Considerations

For public communications and storytelling

Responsible AI
principles checks: Data
Availability, Risk
Minimization,
Transparency and
Explainability

Measures of success

Model implementation and running takes less time than manual tasks

Model results are more accurate than manual review results

Operationalize: Major Bridges Sensor Anomaly Detection

Business Challenge

Monitoring the health of the bridges' structural components using sensor data

Manual surveillance is complex, time consuming and at risk of human error.

Data

Hourly sensor

records for over the last four years

Al method

Supervised Machine Learning

Gradient Boosting (GB) model applied to anomaly detection tasks Final product

A dashboard with counts and trends of anomalies detected for each sensor over time

Framework Considerations

For monitoring not decision making

Principle checks for Transparency and Explainability

Documentation, testing and monitoring requirements Results

PoC flagged additional 11.2% anomalies

Actioned review of the health of structural components and their respective sensors

Proceed to scale to all sensors

Lessons learned

Co-development with client has led to the success of the project

Client is active in labelling anomalies for supervised model training

Client makes dashboard to visualize Machine Learning results

Testing: Grants and Contributions Forecasting

Business Challenge

> Enhance financial planning and mitigation efforts

Streamline. optimize and improve accuracy in financial resource planning Data

Grants and Contributions program and

expenditure

2003 to 2024

data from

Linear regression, Gradient **Boosting and** X-G boost were also

Random Forest performs best

Al method

evaluated

Final Product

An interactive dashboard that illustrates actual expenditures, forecast expenditures for previous, current and future years.

Framework Considerations

For reporting not decision making

Notice and explanations

Documentation , testing and monitoring

Results

Testing in 2024 financial review

78% increase in accuracy over manual estimates

Outcome: fine tuning of model before deployment

Lessons learned

Championing AI use at senior levels

Active involvement of clients throughout the entire process

> Al is a not replacing a function but enhancing information available

Production: Parliamentary Affairs Dashboard

Business Challenge

Parliamentary Affairs Unit reads and summarizes Parliamentary committee minutes for debriefing

This activity is very time consuming

Data

Ouestion Period transcripts

TRAN committee intervention records

Parliamentary Returns questions

Al method

ML classification is carried out where interventions are not tagged

Several techniques used for classification tasks: vectorization, scaling, Random Forest modeling

Final Product

Dashboard displaying interventions. speakers, topic frequencies and trends overtime

Framework considerations

For information not decision making

Principles check for Transparency and Explainability

Documentation, testing and monitoring requirements

Results

Accuracy of

intervention

classification is

80%

If Al use is not widespread, the adoption is at risk

> AI still struggles with qualitative analysis

Lessons

learned

Value is generated in sharing code and

experiences

Summary of lessons learned

Greater success when the client is involved in the modeling, development and dashboarding process:

Sense of ownership

Vested interest in the success

No black boxes

Championing of AI use by senior managers

Adoption of AI transcends working level turnover

What's next for Al at INFC?

Thank you and contact us

Stany Nzobonimpa Senior Data Scientist

Stany.Nzobonimpa@infc.gc.c

Al Framework Al checklist Horizontal Results and Reporting LLM Major Bridges Anomaly Detection Parliamentary Affairs Dashboard

Pierre Zwiller-Panicz **Data Scientist**

pierre.zwillerpanicz@infc.gc.ca **Grants and Contributions** Forecasting

Margarita Novikova **Senior Data Scientist**

Margarita.novikova@infc.gc.c

Grants and Contributions Forecasting Parliamentary Affairs Dashboard

Albury Data Scientist

c.albury@infc.qc.ca Al Framework Horizontal Results and Reporting LLM Major Bridges Anomaly Detection

Kate Burnett-Isaacs Director of Data Science

kate.burnett-Isaacs@infc.qc.ca **Business Intake** Al Framework Al checklist

Karolina Machalek **Deputy Director of Data Science**

karolina.machalek@infc.qc.ca **Business Intake Grants and Contributions Forecasting** Parliamentary Affairs Dashboard